MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An ultra low power ADC for wireless micro-sensor applications

Author(s)
Verma, Naveen
Thumbnail
DownloadFull printable version (6.938Mb)
Alternative title
Ultra low power analog-to-digital converter for wireless micro-sensor applications
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Anantha P. Chandrakasan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Autonomous micro-sensor nodes rely on low-power circuits to enable energy harvesting as a means of sustaining long-term, maintenance free operation. This work pursues the design of an ultra low-power analog-to-digital converter (ADC) whose sampling rate and resolution can be scaled to dynamically recover power savings. The proposed ADC has a sampling rate of 0-100 kS/s and a resolution of either 12 or 8 bits. The design is based on the successive approximation register architecture (SAR), which is suitable for scaleable, micro-power operation. Specifically, the number of active blocks has been minimized to allow efficient power-gating, which, in-turn, has been leveraged to implement scalability features. Several new techniques to improve the efficiency of the ADC have been developed and employed. Analog offset calibration in the regenerative latch is used, to improve the power-delay product of the comparator; pre-amplifier cascade optimization is performed with consideration to thermal noise limitations; weak-inversion biasing is employed in the active amplifiers; passive switch-capacitors are used to generate the auto-zero reference voltage such the CMRR of the ADC is maximized;
 
(cont.) integrated capacitors are laid-out in a new common-centroid arrangement that minimizes edge effects; finally, the sub-DAC's transmission gain is adjusted to reduce non-linearities caused by the attenuating effects of parasitics. The ADC has been fabricated in a 0.18,um CMOS technology. All circuits are powered using a 1V supply, though bootstrapping is used internally. At a resolution of 12-bits, and a sampling rate of 100 kS/s, the power consumption of the entire ADC core is 26/MW. The SNDR of the converter with a 48 kHz input tone is 65dB (10.55 ENOB) and the SFDR is 71dB. The power consumption decreases linearly with sampling rate, and is measured to be approximately 200nW at 500 S/s.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references (p. 143-147).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/34462
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.