Show simple item record

dc.contributor.advisorAlan S. Willsky.en_US
dc.contributor.authorTucker, Dewey S. (Dewey Stanton)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2006-11-07T12:24:27Z
dc.date.available2006-11-07T12:24:27Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/34468
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.en_US
dc.descriptionIncludes bibliographical references (p. [245]-252).en_US
dc.description.abstractThe thesis provides a detailed analysis of the independence structure possessed by multiscale models and demonstrates that such an analysis provides important insight into the multiscale stochastic realization problem. Multiscale models constitute a broad class of probabilistic models which includes the well--known subclass of multiscale autoregressive (MAR) models. MAR models have proven useful in a variety of different application areas, due to the fact that they provide a rich set of tools for various signal processing tasks. In order to use these tools, however, a MAR or multiscale model must first be constructed to provide an accurate probabilistic description of the particular application at hand. This thesis addresses this issue of multiscale model identification or realization. Previous work in the area of MAR model identification has focused on developing algorithms which decorrelate certain subsets of random vectors in an effort to design an accurate model. In this thesis, we develop a set-theoretic and graph-theoretic framework for better understanding these types of realization algorithms and for the purpose of designing new such algorithms.en_US
dc.description.abstract(cont.) The benefit of the framework developed here is that it separates the realization problem into two understandable parts - a dichotomy which helps to clarify the relationship between the exact realization problem, where a multiscale model is designed to exactly satisfy a probabilistic constraint, and the approximate realization problem, where the constraint is only approximately satisfied. The first part of our study focuses on developing a better understanding of the independence structure exhibited by multiscale models. As a result of this study, we are able to suggest a number of different sequential procedures for realizing exact multiscale models. The second part of our study focuses on approximate realization, where we define a relaxed version of the exact multiscale realization problem. We show that many of the ideas developed for the exact realization problem may be used to better understand the approximate realization problem and to develop algorithms for solving it. In particular, we propose an iterative procedure for solving the approximate realization problem, and we show that the parameterized version of this procedure is equivalent to the well-known EM algorithm. Finally, a specific algorithm is developed for realizing a multiscale model which matches the statistics of a Gaussian random process.en_US
dc.description.statementofresponsibilityby Dewey S. Tucker.en_US
dc.format.extent252 p.en_US
dc.format.extent18968580 bytes
dc.format.extent18980961 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleStochastic realization theory for exact and approximate multiscale modelsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc70717094en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record