MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning static object segmentation from motion segmentation

Author(s)
Ross, Michael G. (Michael Gregory), 1975-
Thumbnail
DownloadFull printable version (19.82Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Keslie Pack Kaelbling.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes the SANE (Segmentation According to Natural Examples) algorithm for learning to segment objects in static images from video data. SANE uses background subtraction to find the segmentation of moving objects in videos. This provides object segmentation information for each video frame. The collection of frames and segmentations forms a training set that SANE uses to learn the image and shape properties that correspond to the observed motion boundaries. Then, when presented with new static images, the model infers segmentations similar to the observed motion segmentations. SANE is a general method for learning environment-specific segmentation models. Because it is self-supervised, it can adapt to a new environment and new objects with relative ease. Comparisons of its output to a leading image segmentation algorithm demonstrate that motion-defined object segmentation is a distinct problem from traditional image segmentation. The model outperforms a trained local boundary detector because it leverages the shape information it learned from the training data.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references (p. 105-110).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/34470
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.