MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The role of ras signaling associative learning and memory in Drosophila

Author(s)
Sakamoto, Toshimasa
Thumbnail
DownloadFull printable version (26.83Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences.
Advisor
William G. Quinn.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Ras is an evolutionally conserved signaling molecule that has been implicated in a variety of cellular events, such as cell proliferation, differentiation, and survival. Recent studies also suggest roles of Ras in neuronal plasticity. I investigated the role of Ras in associative learning and memory in Drosophila. Flies carrying hypomorphic ras mutations were impaired in memory, with normal learning performance. The severity of the memory impairment correlated with molecular lesions in the ras gene. Studies on synaptic morphology at larval neuromuscular junctions revealed an increased number of presynaptic varicosities in the ras mutants. Flies carrying a dominant-negative or -active form of a ras transgene showed a learning impairment, when expression of the transgene occurred in the mushroom bodies (MBs), the center for the associative learning and memory. Acute induction of dominant-active ras expression also resulted in a learning impairment. Simple sensorimotor functions and overall MB morphology were normal in all the flies that showed learning or memory impairments. These results collectively suggest a direct role of Ras signaling in associative learning and memory in Drosophila.
 
(cont.) Here, I also present the results of characterization of a strong eye phenotype resulting from inhibition of Ras signaling. When a dominant-negative form of mammalian ras was expressed in the eye imaginal disc, flies developed eyes that are severely reduced in size. The phenotype was modified in a way sensitive to the level of Ras signaling. It was based on massive cell death resulting from inhibition of EGFR/Ras-dependent signaling pathways, including the MAPK and PI3-K pathways. Additional components such as Amnesiac and Rap appeared to modulate the signaling machinery associated with the phenotype. Oncogenic ras has been implicated in many types of tumors. This Ras-associated small eye phenotype may provide a new powerful tool to help develop therapeutic strategies for human cancers, as well as further understand the complexity of Ras signaling in basic biological events.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2004.
 
Includes bibliographical references.
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/34483
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Brain and Cognitive Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.