MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Noncommutative ring spectra

Author(s)
Angeltveit, Vigleik
Thumbnail
DownloadFull printable version (4.998Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Haynes R. Miller.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Let A be an Ax ring spectrum. We give an explicit construction of topological Hochschild homology and cohomology of A using the Stasheff associahedra and another family of polyhedra called cyclohedra. Using this construction we can then study how THH(A) varies over the moduli space of AO structures on A, a problem which seems largely intractable using strictly associative replacements of A. We study how topological Hochschild cohomology of any 2-periodic Morava K-theory varies over the moduli space of AO structures and show that in the generic case, when a certain matrix describing the multiplication is invertible, the result is the corresponding Morava E-theory. If this matrix is not invertible, the result is some extension of Morava E-theory, and exactly which extension we get depends on the AO structure. To make sense of our constructions, we first set up a general framework for enriching a subcategory of the category of noncommutative sets over a category C using products of the objects of a non-E operad P in C. By viewing the simplicial category as a subcategory of the category of noncommutative sets in two different ways, we obtain two generalizations of simplicial objects.
 
(cont.) For the operad given by the Stasheff associahedra we obtain a model for the 2-sided bar construction in the first case and the cyclic bar and cobar construction in the second case. Using either the associahedra or the cyclohedra in place of the geometric simplices we can define the geometric realization of these objects.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2006.
 
Includes bibliographical references (p. 87-91).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/34549
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.