MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Models of high rank for weakly scattered theories

Author(s)
Chan, Alice Shih Ying
Thumbnail
DownloadFull printable version (1.131Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Gerald E. Sacks.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Scott rank of a countable structure A, denoted sr(A), was observed by Nadel to be at most wA + 1, where wA4 is the least ordinal not recursive in A. Let T be weakly scattered and L(a,T) be E2-admissible. We give a sufficient condition, the B,-hypothesis, under which T has model A with w4A = a and sr(A) = a + 1. Given the B,-hypothesis, an iterated forcing argument is used to obtain a generic Ta D T such that Th has a model with the desired properties.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2006.
 
Includes bibliographical references (leaves 32-33).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/34557
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.