dc.contributor.advisor | Franz-Josef Ulm. | en_US |
dc.contributor.author | Katzoff, Golda Y | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. | en_US |
dc.date.accessioned | 2006-11-07T13:32:14Z | |
dc.date.available | 2006-11-07T13:32:14Z | |
dc.date.copyright | 2006 | en_US |
dc.date.issued | 2006 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/34596 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2006. | en_US |
dc.description | Includes bibliographical references (leaf 40). | en_US |
dc.description.abstract | The penetration of salt into porous materials is known to have deleterious effects, often resulting in fracture. The damage process begins with a saline solution penetrating the porous network by way of capillary action. This is followed by supersaturation of the saline solution, which may result in the formation of salt crystals. In turn, these salt crystals induce pressure on the pore walls. Though the stress generated by the crystallization of salt in a single pore alone is unlikely to result in fracture, if the crystallization region is large enough, the combined effects can lead to fracture. This thesis will first provide an overview of the crystallization process and then focus on the factors leading directly to fracture. The thesis will examine various key processes proposed by researchers, identify elements that have not yet been explored, and finally propose a cohesive outline of the processes responsible for fracture. | en_US |
dc.description.statementofresponsibility | by Golda Y. Katzoff. | en_US |
dc.format.extent | 44 leaves | en_US |
dc.format.extent | 1860794 bytes | |
dc.format.extent | 1862530 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | |
dc.subject | Civil and Environmental Engineering. | en_US |
dc.title | Fracture of porous materials induced by crystallization of salt | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering | |
dc.identifier.oclc | 71269537 | en_US |