MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrated automotive exhaust engineering : uncertainty management

Author(s)
Fang, Xitian, 1963-; Wan, Deming, 1967-
Thumbnail
DownloadFull printable version (14.28Mb)
Other Contributors
System Design and Management Program.
Advisor
Daniel Whitney.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The global automotive industry has entered a stagnating period. Automotive OEMs and their tier suppliers are struggling for business growth. One of the most important strategies is to improve the engineering efficiency in the product development process. The engineering uncertainties have been identified as the main obstacles in the Lean Engineering practices. This study will be focused on the engineering development process of ArvinMeritor Emission Technologies. The lean engineering principles and techniques are applied to the current product development process. The Value Stream Mapping and Analysis method is used to identify the information flow inside the current engineering process. Based on the value stream map, the uncertainties at various development stages in the process are identified. The Design Structure Matrix is used to identify any unplanned design iteration, which results in lower engineering efficiency. The House of Quality is used to prioritize the importance of the iterations. The suggested excel program can effectively evaluate the effect of task duration, probability, impact and learning curve assumption.
 
(cont.) In order to quantitatively predict the effects of the uncertainties, a System Dynamic model is specifically developed for the current engineering of Emission Technologies. The results clearly indicate the control factors for on-time delivery, efficient resource allocation, and cost reduction. This study has integrated the techniques from system engineering, system project management, and system dynamics. An improved automotive exhaust engineering process is proposed.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, System Design and Management Program, 2006.
 
Includes bibliographical references (p. 104-108).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/34631
Department
System Design and Management Program.
Publisher
Massachusetts Institute of Technology
Keywords
System Design and Management Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.