Show simple item record

dc.contributor.advisorStephen C. Graves and Daniel Frey.en_US
dc.contributor.authorKing, Stephen G. (Stephen George), 1974-en_US
dc.contributor.otherLeaders for Manufacturing Program.en_US
dc.date.accessioned2006-11-08T16:35:28Z
dc.date.available2006-11-08T16:35:28Z
dc.date.copyright2004en_US
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/34772
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2004.en_US
dc.descriptionIncludes bibliographical references (p. 79-81).en_US
dc.description.abstractValue stream mapping is a technique that uses icons to map the flow of product through a manufacturing system. These icons are aided by summary statistics to further detail the specific manufacturing system. The value stream mapping process usually consists of defining the current state of the system and then, using the principles of lean manufacturing, mapping an improved future system state. Although this is the popular technique, variants and refinements of it exist. This work examines the various techniques of value stream mapping and the methods used to evaluate value stream maps to improve manufacturing systems. The past and current research into value stream mapping and the methods to analyze these maps are compared and contrasted. A set of core analysis questions is developed that summarize the various value stream mapping methodologies. The application of these questions to an enhanced value stream map is developed as a tool, hybrid value stream mapping. Hybrid value stream mapping is then used to analyze the current state value stream map of a manufacturing process, the forging of automotive ring gears. The answers to the core analysis questions enabled the identification of weaknesses in the manufacture of ring gears and suggested system-wide problems. To further clarify and suggest means to rectify these weaknesses, methods beyond the scope of value stream mapping were utilized. By using systems based on standard inventory theory, economic production quantities, techniques to improve information visibility, and methods to enhance production equipment savings of over $4.7 million net present value were discovered for the ring gear production process.en_US
dc.description.statementofresponsibilityby Stephen G. King.en_US
dc.format.extent86 p.en_US
dc.format.extent6446653 bytes
dc.format.extent6446459 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Manufacturing Program.en_US
dc.titleUsing value stream mapping to improve forging processesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Manufacturing Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc56715071en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record