MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Complex system analysis through discrete event simulation

Author(s)
Faranca, Anthony G. (Anthony Gilbert), 1971-
Thumbnail
DownloadFull printable version (8.030Mb)
Other Contributors
Leaders for Manufacturing Program.
Advisor
Jeremie Gallien and David Hardt.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
E-commerce is generally thought of as a world without walls. Although a computer monitor may replace a storefront window, the products that are purchased online have to be distributed from a brick and mortar warehouse. Amazon.com now makes it possible to instantly order and quickly receive everything from CDs and books to large toys and home furnishings. Amazon's success not only depends on their e-business capabilities, but also on their distribution and warehouse management systems that support them. Fulfillment center management therefore has become an important component of Amazon's unique set of system activities that serve as a corporate strategy. In an attempt to improve current and future warehouse management practices, the engineering group at Amazon has recently invested in Discrete Event Simulation technology. This thesis focuses on the creation of a discrete event simulation of the Fernley, NV semi-automated distribution center's outbound flow process. More specifically, the business subjects investigated include: picker variability, tote diversion, item-per-tote reduction, and conveyor merge logic. The model presented is Amazon's first attempt at simulating this environment and serves as an initial step towards a more detailed simulation of this facility. Preliminary findings from the simulation are presented and the report is concluded with a cultural evaluation of the present engineering directive. It should be noted that this published version of the thesis has been approved by Amazon.com and does not contain any proprietary data. A fully detailed version of this thesis was only submitted to Amazon.com and to the advisors listed below.
Description
Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2004.
 
Includes bibliographical references (leaf 63).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/34788
Department
Leaders for Manufacturing Program at MIT; Massachusetts Institute of Technology. Department of Mechanical Engineering; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Mechanical Engineering., Leaders for Manufacturing Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.