MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assembly and functionalization of phage onto substrates patterned by dip-pen nanolithography

Author(s)
Gray, David Steven
Thumbnail
DownloadFull printable version (1.355Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Angela M. Belcher.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Advances in nanochemistry will drive the development of technologies at the scale of 1 - 100 nm. Principles of biology are used for the self-assembly of structures and devices at this scale. The Ml 13 bacteriophage, a virus employed in phage-display libraries, serves as a scaffold for nanoscale structures. Phage are functionalized with inorganic materials, and controlled placement of phage at the nanoscale may lead to useful devices. Substrates patterned with dip-pen nanolithography (DPN) serve as templates for the deposition of phage. On gold substrates, 16-mercaptohexadecanoic acid (MHA) is deposited to form patterned lines. After surface passivation and activation chemistry, phage are deposited and adhere to the patterned substrate. Images from atomic force microscopy support that phage are covalently coupled to MHA lines and that cobalt precipitates on patterned phage.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2006.
 
Includes bibliographical references (leaves 25-26).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/35069
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.