MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time path-planning using mixed-integer linear programming and global cost-to-go maps

Author(s)
Toupet, Olivier
Thumbnail
DownloadFull printable version (625.8Kb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Eric Feron.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
With the advance in the fields of computer science, control and optimization, it is now possible to build aerial vehicles which do not need pilots. An important capability for such autonomous vehicles is to be able to generate their own path to navigate in a constrained environment and accomplish mission objectives, such as reaching waypoints in minimal time. To account for dynamic changes in the environment, perturbations, modeling errors and modifications in the mission scenario, the trajectory needs to be continuously re-optimized online based on the latest available updates. However, to allow for high update rates, the trajectory optimization problem needs to be simple enough to be solved quickly. Optimizing for a continuous trajectory of a dynamically-constrained vehicle in the presence of obstacles is an infinite-dimension nonlinear optimal control problem. Such a problem is intractable in real-time and simplifications need to be made. In this thesis, the author presents the mechanisms used to design a path-planner with real-time and long-range capabilities. The approach relies on converting the optimal control problem into a parameter optimization one whose horizon can be reduced by using a global cost-to-go function to provide an approximate cost for the tail of the trajectory.
 
(cont.) Thus only the short-term trajectory is being constantly optimized online based on a mixed integer linear programming formulation that accounts for the vehicle's performance. The cost-to-go function presented in this thesis has the feature to be tailored to both the environment and the vehicle's maneuvering capabilities. The author then implements and demonstrates a path-planner software based on the presented approach for a real unmanned helicopter, the Renegade, that flew within the DARPA SEC program. A full description of the capabilities and functions supported by the planner software are provided. Hardware-in-the-loop simulation results are provided to illustrate the performance of the system.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (leaves 93-95).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/35290
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.