Show simple item record

dc.contributor.advisorKaren Willcox.en_US
dc.contributor.authorJones, Anya Rachelen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2007-01-10T15:35:40Z
dc.date.available2007-01-10T15:35:40Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/35293
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (p. 133-137).en_US
dc.description.abstractAircraft planform design, takeoff operations, and airfoil design are examined as a complete system in order to quantify tradeoffs that can result in a quiet aircraft. An aircraft design model was developed to generate blended-wing-body-type designs using simple-physics models and empirical scaling from a reference design. This model generates a scaled airframe and engine, an estimate of aircraft weights and center of gravity, a takeoff trajectory, outer wing airfoil profiles, and takeoff noise predictions. Integrating the model with a single-level optimization framework, it was found that optimization for minimum noise can result in a significant noise reduction on takeoff, primarily due to changes in aircraft design and operations. There exists a design-operations coupling between the departure flight path angle and the engine size which must be exploited. Low-noise designs resulting from the single-level optimization require more fuel to complete the design mission. Modifications to the airfoil profiles do not significantly contribute to further reductions in takeoff noise, but do mitigate the fuel burn increase without adversely affecting noise levels.en_US
dc.description.abstract(cont.) A distributed optimization framework was constructed from a problem decomposition into three subspaces: aircraft planform and engine design, aircraft operations, and wing design. In this framework, a system level optimizer is responsible for minimizing the system noise while subspace optimizers control the disciplinary models individually. This setup allowed for the exploration of different areas of the design space. As a result, the distributed optimization converged to a fundamentally different design solution with the same minimum noise value as in the single-level optimization, but with a much lower fuel burn. The key contributions of this thesis are the development and quantitative analysis of a weight and center of gravity model for an unconventional aircraft configuration, a distributed optimization framework, and a low noise aircraft design with competitive fuel burn.en_US
dc.description.statementofresponsibilityby Anya Rachel Jones.en_US
dc.format.extent137 p.en_US
dc.format.extent29536474 bytes
dc.format.extent29532405 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectAeronautics and Astronautics.en_US
dc.titleMultidisciplinary optimization of aircraft design and takeoff operations for low noiseen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc74281281en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record