MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cerebral white matter analysis using diffusion imaging

Author(s)
O'Donnell, Lauren Jean
Thumbnail
DownloadFull printable version (47.92Mb)
Other Contributors
Harvard University--MIT Division of Health Sciences and Technology.
Advisor
W. Eric L. Grimson and Carl-Fredrik Westin.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis we address the whole-brain tractography segmentation problem. Diffusion magnetic resonance imaging can be used to create a representation of white matter tracts in the brain via a process called tractography. Whole brain tractography outputs thousands of trajectories that each approximate a white matter fiber pathway. Our method performs automatic organization, or segmention, of these trajectories into anatomical regions and gives automatic region correspondence across subjects. Our method enables both the automatic group comparison of white matter anatomy and of its regional diffusion properties, and the creation of consistent white matter visualizations across subjects. We learn a model of common white matter structures by analyzing many registered tractography datasets simultaneously. Each trajectory is represented as a point in a high-dimensional spectral embedding space, and common structures are found by clustering in this space. By annotating the clusters with anatomical labels, we create a model that we call a high-dimensional white matter atlas.
 
(cont.) Our atlas creation method discovers structures corresponding to expected white matter anatomy, such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, etc. We show how to extend the spectral clustering solution, stored in the atlas, using the Nystrom method to perform automatic segmentation of tractography from novel subjects. This automatic tractography segmentation gives an automatic region correspondence across subjects when all subjects are labeled using the atlas. We show the resulting automatic region correspondences, demonstrate that our clustering method is reproducible, and show that the automatically segmented regions can be used for robust measurement of fractional anisotropy.
 
Description
Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2006.
 
Includes bibliographical references (p. 183-198).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/35514
Department
Harvard University--MIT Division of Health Sciences and Technology
Publisher
Massachusetts Institute of Technology
Keywords
Harvard University--MIT Division of Health Sciences and Technology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.