MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Center for Global Change Science
  • Joint Program on the Science and Policy of Global Change Reports
  • View Item
  • DSpace@MIT Home
  • Center for Global Change Science
  • Joint Program on the Science and Policy of Global Change Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A modeling study on the climate impacts of black carbon aerosols

Author(s)
Wang, Chien.
Thumbnail
DownloadMITJPSPGC_Rpt84.pdf (1.855Mb)
Terms of use
http://mit.edu/globalchange/www/abstracts.html#a84
Metadata
Show full item record
Abstract
The role of black carbon (BC) aerosols in climate change is important because of its strong capability in causing extinction of solar radiation. A three-dimensional interactive aerosol-climate model has been used to study the climatic impact of BC. The interannual variations of BC solar forcing derived from 20-year transient integrations are up to 4 times as large as the means mainly related to changes in cloud cover, snow depth (about +/- 20% over many high- or even mid-latitude regions in Northern Hemisphere) and thus the surface albedo, all caused by BC solar forcing itself. With an absolute amount three times higher than that of the top of the atmosphere (TOA) forcing, the surface forcing of BC is an extremely important factor in analyzing the climate impact of BC. BC aerosols cause a “cloud burning” effect in several polluted regions and a “cloud enhancing” effect in some high-latitude sites. Combined with BC-caused changes in surface albedo, this is defined as a non-Twomey-Albrecht indirect forcing by BC, which alters the radiative budgets by changing cloud cover and some land-surface properties thermodynamically rather than microphysically. The result of this study does not indicate that BC aerosols contribute to a significant increase in land-surface temperature with annual emissions of 14 TgC. The calculated surface temperature change is determined by a subtle balance among changes in surface energy sources and sinks as well as changes in the hydrological cycle, all caused by BC radiative forcing. The result of this study shows that the influence of BC aerosols on climate and environment at the regional scale is more significant than at the global scale. Several important feedbacks between BC radiative effect and climate dynamics revealed in this study suggest the importance of using interactive aerosol-climate models to address the issues related to the climate impacts of aerosols.
Description
Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change Website. (http://mit.edu/globalchange/www/)
 
Includes bibliographical references (p. 18-19).
 
Date issued
2002-03
URI
http://mit.edu/globalchange/www/abstracts.html#a84
http://hdl.handle.net/1721.1/3560
Publisher
MIT Joint Program on the Science and Policy of Global Change
Other identifiers
no. 84
Series/Report no.
Report no. 84

Collections
  • Joint Program on the Science and Policy of Global Change Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.