MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The design of a control architecture for a heavy-lift precision manipulator for use in contact with the environment

Author(s)
Becker, William T. (William Theodore Leroy)
Thumbnail
DownloadFull printable version (21.67Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Steven Dubowsky.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Robotic manipulators can be used to enhance the strength and dexterity of a human user. This thesis considers the design of a controller for a heavy-lift manipulator for lifting and inserting payloads onto aircraft on the deck of a ship. The purpose of this robot is to reduce manpower requirements aboard the ship, and reduce the physical requirements for the individuals loading the payloads onto an aircraft. This particular application presents several control challenges, including structural resonances, complex interaction with the environment, high joint friction that varies over time, tight tolerances for the insertion tasks, and ship motions. This thesis builds upon previous works by Garretson [17] and DiCicco [9] by further developing an insertion control mode for intuitive human interaction with the payload of the manipulator when in contact with the environment. These control algorithms, as well as those developed in the previous work, are also validated on a laboratory manipulator. This thesis contains a detailed description of the control architecture for the heavy lift manipulator, including the insertion control mode and a position control mode for use when the manipulator is not in contact with the environment. Both architectures are validated with dynamic simulation models.
 
(cont.) The position control response of this manipulator is shown to be improved with the implementation of friction compensation. In some joints, outputs from an adaptive friction estimator are used to make feed-forward models of friction for use during environmental contact. The position and insertion controllers are then evaluated under open-loop and human control on a laboratory manipulator.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.
 
"June 2006."
 
Includes bibliographical references (leaves 117-121).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/35662
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.