MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High performance path following for marine vehicles using azimuthing podded propulsion

Author(s)
Greytak, Matthew B. (Matthew Bardeen)
Thumbnail
DownloadFull printable version (11.07Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Michael S. Triantafyllou.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Podded propulsion systems offer greater maneuvering possibilities for marine vehicles than conventional shaft and rudder systems. As the propulsion unit rotates about its vertical axis to a specified azimuth angle, the entire thrust of the propeller contributes to the steering moment without relying on lift generation by a control surface such as a rudder. However, the larger sideforce and moment cause the ship to enter the nonlinear realm sooner than a ruddered vessel. Furthermore if the rudder or azimuthing propulsor is aft of the vessel's center of gravity then the system is non-minimum phase; during a turn the ship center initially moves in the direction opposite the turn. For these reasons it is necessary to design a robust maneuvering control system to set the azimuth angle of the propulsor in an intelligent and stable manner. This thesis focuses on the path following performance of a vessel with podded propulsion. The enhanced maneuvering abilities of such vessels allow the time constant of cross-track error response to be greatly reduced. Additionally these vessels can follow course changes and waypoints more precisely than ruddered vessels.
 
(cont.) A simple path following algorithm was developed to achieve this performance; the algorithm uses simulation-based feedforward terms to anticipate the sliding motion of the vessel during a turn. The stability and performance analysis was performed in three domains: linear theory, a nonlinear simulation, and experiments with a 12-foot autonomous surface vessel. Experiments confirmed that path following performance was vastly improved using the feedforward algorithm for waypoints at which the course change angle was large.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.
 
Includes bibliographical references (p. 101-102).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/35673
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.