MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spontaneous speech recognition using HMMs

Author(s)
Yoder, Benjamin W. (Benjamin Wesley), 1977-
Thumbnail
DownloadFull printable version (2.945Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Deb Roy.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes a speech recognition system that was built to support spontaneous speech understanding. The system is composed of (1) a front end acoustic analyzer which computes Mel-frequency cepstral coefficients, (2) acoustic models of context-dependent phonemes (triphones), (3) a back-off bigram statistical language model, and (4) a beam search decoder based on the Viterbi algorithm. The contextdependent acoustic models resulted in 67.9% phoneme recognition accuracy on the standard TIMIT speech database. Spontaneous speech was collected using a "Wizard of Oz" simulation of a simple spatial manipulation game. Naive subjects were instructed to manipulate blocks on a computer screen in order to solve a series of geometric puzzles using only spoken commands. A hidden human operator performed actions in response to each spoken command. The speech from thirteen subjects formed the corpus for the speech recognition results reported here. Using a task-specific bigram statistical language model and context-dependent acoustic models, the system achieved a word recognition accuracy of 67.6%. The recognizer operated using a vocabulary of 523 words. The recognition had a word perplexity of 36.
Description
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2003.
 
Includes bibliographical references (leaf 63).
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/36108
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.