Show simple item record

dc.contributor.advisorRaymond J. Sedwick.en_US
dc.contributor.authorHuffman, Kara M. (Kara Marie)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2007-02-21T11:51:37Z
dc.date.available2007-02-21T11:51:37Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/36170
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.en_US
dc.descriptionIncludes bibliographical references (p. 179-187).en_US
dc.description.abstractStar trackers provide numerous advantages over other attitude sensors because of their ability to provide full, three-axis orientation information with high accuracy and flexibility to operate independently from other navigation tools. However, current star trackers are optimized to maximize accuracy, at the exclusion of all else. Although this produces extremely capable systems, the excessive mass, power consumption, and cost that result are often contradictory to the requirements of smaller space vehicles. Thus, it is of interest to design smaller, lower cost, albeit reduced capability star trackers that can provide adequate attitude and rate determination to small, highly maneuverable, low-cost spacecraft. This thesis discusses the analysis used to select hardware and predict system performance, as well as the algorithms that have been employed to determine attitude information and rotation rates of the spacecraft. Finally, the performance of these algorithms using computer simulated images, nighttime photographs, and images captured directly by star tracker prototypes is presented.en_US
dc.description.statementofresponsibilityby Kara M. Huffman.en_US
dc.format.extent187 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectAeronautics and Astronautics.en_US
dc.titleDesigning star trackers to meet micro-satellite requirementsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc74281882en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record