MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient localization in a dispersive waveguide : applications in terrestrial continental shelves and on Europa

Author(s)
Lee, Sunwoong
Thumbnail
DownloadFull printable version (14.45Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Nicholas C. Makris.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Methods are developed for passive source localization and environmental parameter estimation in seismo-acoustic waveguides by exploiting the dispersive behavior of guided wave propagation. The methods developed are applied to the terrestrial continental shelf environment and the Jovian icy satellite Europa. The thesis is composed of two parts. First, a method is derived for instantaneous source-range estimation in a horizontally-stratified ocean waveguide from passive beam-time intensity data obtained after conventional plane-wave beamforming of acoustic array measurements. The method is advantageous over existing source localization methods, since (1) no knowledge of the environment is required except that the received field should not be dominated by purely waterborne propagation, (2) range can be estimated in real time with little computational effort beyond plane-wave beamforming, and (3) array gain is fully exploited. Second, source range estimation and environmental parameter inversion using passive echo-sounding techniques are discussed and applied to Europa. We show that Europa's interior structure may be determined by seismo-acoustic echo sounding techniques by exploiting natural ice fracturing events or impacts as sources of opportunity.
 
(cont.) A single passive seismic sensor on Europa's surface may then be used to estimate the thickness of its ice shell and the depth of its subsurface ocean. To further understand the seismo-acoustic characteristics of natural sources on Europa, a fracture mechanics model is developed for the initiation and propagation of a crack through a porous ice layer of finite thickness under gravitational overburden. It is found that surface cracks generated in response to a tidally induced stress field may penetrate through the entire outer brittle layer if a subsurface ocean is present on Europa. While Europa's ice is likely highly porous and fractured, our current caculations show that porosity-induced scattering loss of ice-penetrating radar waves should not be significant.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.
 
Includes bibliographical references (p. 211-225).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/36197
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.