Show simple item record

dc.contributorXiao, Xiangming.en_US
dc.contributorMelillo, Jerry M.en_US
dc.contributorKicklighter, David W.en_US
dc.contributorMcGuire, A. David.en_US
dc.contributorPrinn, Ronald G.en_US
dc.contributorWang, Chien.en_US
dc.contributorStone, Peter H.en_US
dc.contributorSokolov, Andrei P.en_US
dc.date.accessioned2003-10-24T14:57:23Z
dc.date.available2003-10-24T14:57:23Z
dc.date.issued1997-11en_US
dc.identifier.otherno. 28en_US
dc.identifier.urihttp://mit.edu/globalchange/www/abstracts.html#a28en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/3620
dc.descriptionIncludes bibliographical references (p. 13-16).en_US
dc.descriptionAbstract in HTML and technical report in HTML and PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/)en_US
dc.description.abstractThe Terrestrial Ecosystem Model (TEM version 4.1) is applied to assess the sensitivity of net ecosystem production (NEP) of the terrestrial biosphere to transient changes in atmospheric CO2 concentration and climate in the 21st century. These NEP estimates provide a measure of the potential for various vegetated regions and countries to act as sinks or sources of atmospheric CO2. We use three transient climate change predictions over the period of 1977-2100 from the MIT Integrated Global System Model for assessment of the effects of different climate changes. Global annual NEP has large interannual variations and increases over time, thus representing a growing net carbon flux from the atmosphere to the biosphere. Latitudinal distribution of total annual NEP along 0.5 degree resolution latitudinal bands has a significant shift from the tropics to the northern mid- and high-latitudes over time. The sums of annual NEP over the period of 1990-2100 differ substantially among the twelve economic regions of the world. The results show that temporal dynamics and spatial distribution of annual NEP are very sensitive to the magnitudes and paths of temporal changes in atmospheric CO2 concentration and climate.en_US
dc.format.extent23 p.en_US
dc.format.extent345293 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMIT Joint Program on the Science and Policy of Global Changeen_US
dc.relation.ispartofseriesReport no. 28en_US
dc.subject.lccQC981.8.C5 M58 no.28en_US
dc.titleTransient climate change and net ecosystem production of the terrestrial biosphereen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record