MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of multifunctional software for evaluating the photonic properties of new dielectric composite geometries

Author(s)
Cogswell, Daniel A. (Daniel Aaron)
Thumbnail
DownloadFull printable version (3.237Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
W. Craig Carter.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Software was developed for solving Maxwell's equations using the finite-difference time-domain method, and was used to study 2D and 3D dielectric composites. The software was written from the ground up to be fast, extensible, and generalized for solving any finite difference problem. The code supports parallelization, allowing solutions to be obtained quickly using a beowulf cluster. An extension to the basic FDTD plane wave source was derived, allowing for the creation of angled, periodic, unidirectional plane waves on a square grid. 1D photonic crystal stacks were arranged in a square array and it was discovered that sizeable bandgaps for 2D and 3D geometries appear along the principle axes for different polarizations of the structure. Furthermore, bandgaps in different directions and polarizations could be made to overlap for reasonably large frequency ranges. The structure show promise for use as a low-threshold lasing and may be optimized to produce a complete photonic bandgap.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2006.
 
Includes bibliographical references (leaves 77-79).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/36219
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.