MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Sloan School of Management
  • Management - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Sloan School of Management
  • Management - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Buyout prices in online auctions

Author(s)
Gupta, Shobhit
Thumbnail
DownloadFull printable version (6.421Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Jerémie Gallien.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Buyout options allow bidders to instantly purchase at a specified price an item listed for sale through an online auction. A temporary buyout option disappears once a regular bid above the reserve price is made, while a permanent option remains available until it is exercised or the auction ends. Buyout options are widely used in online auctions and have significant economic importance: nearly half of the auctions today are listed with a buyout price and the option is exercised in nearly one fourth of them. We formulate a game-theoretic model featuring time-sensitive bidders with independent private valuations and Poisson arrivals but endogenous bidding times in order to answer the following questions: How should buyout prices be set in order to maximize the seller's discounted revenue? What are the relative benefits of using each type of buyout option? While all existing buyout options we are aware of currently rely on a static buyout price (i.e. with a constant value), what is the potential benefit associated with using instead a dynamic buyout price that varies as the auction progresses?
 
(cont.) For all buyout option types we exhibit a Nash equilibrium in bidder strategies, argue that this equilibrium constitutes a plausible outcome prediction, and study the problem of maximizing the corresponding seller revenue. In particular, the equilibrium strategy in all cases is such that a bidder exercises the buyout option provided it is still available and his valuation is above a time-dependent threshold. Our numerical experiments suggest that a seller may significantly increase his utility by introducing a buyout option when any of the participants are time-sensitive. Furthermore, while permanent buyout options yield higher predicted revenue than temporary options, they also provide additional incentives for late bidding and may therefore not be always more desirable. The numerical results also imply that the increase in seller's utility (over a fixed buyout price auction) enabled by a dynamic buyout price is small and does not seem to justify the corresponding increase in complexity.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2006.
 
Includes bibliographical references (p. 149-154).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/36223
Department
Massachusetts Institute of Technology. Operations Research Center.
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Management - Ph.D. / Sc.D.
  • Management - Ph.D. / Sc.D.
  • Operations Research - Ph.D. / Sc.D.
  • Operations Research Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.