MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular dynamics analysis of spectral characteristics of phonon heat conduction in silicon

Author(s)
Henry, Asegun Sekou Famake
Thumbnail
DownloadFull printable version (8.983Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Gang Chen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Due to the technological significance of silicon, its heat conduction mechanisms have been studied extensively. However, there have been some lingering questions surrounding the phonon mean free path and importance of different polarizations. This research investigates phonon transport in bulk crystalline silicon using molecular dynamics and lattice dynamics. The interactions are modeled with the environment dependent interatomic potential (EDIP), which was designed to represent the bulk phases of silicon. Temperature and phonon frequency dependent relaxation times are extracted from the MD simulations and used to generate a detailed picture of phonon transport. It is found that longitudinal acoustic phonons have the highest contribution to thermal conductivity and that the phonon mean free path varies by orders of magnitude with respect to the phonon spectra. For relaxation times, we observe moderate anisotropy and good agreement with the frequency dependence predicted by scattering theories. We also find that phonons with mean free paths between .1 and 10 micron are responsible for 50% of the thermal conduction, while phonons with wavelengths less than 10 nanometers make up 80%.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.
 
Includes bibliographical references (p. 91-95).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/36233
Department
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Master's degree
  • Mechanical Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.