Show simple item record

dc.contributor.advisorRichard R. Schrock.en_US
dc.contributor.authorWeare, Walter Warrenen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2007-02-21T13:16:37Z
dc.date.available2007-02-21T13:16:37Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/36259
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2006.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe dinitrogen reduction capability of a series of new triamidoamine based molybdenum compounds has been studied. The synthesis of a number of different triamidoamine ligands, and their resulting molybdenum compounds, is described. While symmetric variants containing electron-withdrawing hexaisopropyl terphenyl substituents can successfully catalyze dinitrogen reduction to ammonia, only the most bulky unsymmetric "hybrid" compounds can facilitate this reaction. Further study of these systems reveals a different pathway for catalyst failure than had previously been observed. It was discovered that, at least for the smaller ligands, a base-catalyzed hydrogenase reaction occurs at a rate much faster than that of ammonia formation. The Mo(IV) diazenido (LMoN2H) compound undergoes net H. loss, forming the Mo(III) dinitrogen (LMoN2) species with concomitant release of H2. Examination of the "parent" system has also revealed previously unknown intricacies of the dinitrogen reduction reaction. By developing a means to measure H2 formation, we are now able to fully quantify the reducing equivalents added to our system.en_US
dc.description.abstract(cont.) This supports our belief that only NH3 and H2 are formed during catalysis. In addition, control experiments demonstrate that the proton source typically utilized for catalytic study, [2,6-lutidinium][BAr4'], can be reductively coupled under catalytic conditions. Therefore an acid that avoids this coupling reaction ([2,4,6-collidinium][BAr4']) is now utilized during most catalytic experiments.en_US
dc.description.statementofresponsibilityby Walter Warren Weare.en_US
dc.format.extent138 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemistry.en_US
dc.titleSynthetic and mechanistic study of catalytic dintrogen reductionen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc77281794en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record