Show simple item record

dc.contributor.advisorJohn P. Grotzinger.en_US
dc.contributor.authorSmith, Odin Alonso, 1973-en_US
dc.date.accessioned2007-03-12T17:42:55Z
dc.date.available2007-03-12T17:42:55Z
dc.date.copyright1999en_US
dc.date.issued1999en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/36672
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1999.en_US
dc.descriptionIncludes bibliographical references (leaves 61-79).en_US
dc.description.abstractA stratigraphic and sedimentologic investigation of the Kuibis Subgroup, northern Nama Basin, was undertaken. An U-Pb zircon age determination on an intercalated volcanic ash directly constrains the age of the subgroup to be on the order of 550-548 Ma. The study involved logging eight sections which were measured and described in detail, spanning the region extending from Driedoornvlagte, located east of the Naukluft mountains, to Onis, at the southern edge of the Naukluft Mountains, then southward along the Namibian Escarpment to Zaris. The sections were correlated based on lithologic characteristics as well as sequence stratigraphic attributes. In addition, five of these sections were sampled at two- to five-meter intervals for ' 3C isotopic data, including two in the main study area (the adjoining farms of Donkergange and Zebra River), two southwards towards Zaris and one at Driedoornvlakte, which sits structurally beneath the Naukluft Nappes. Stratigraphic cross-sections constructed from the individual measured sections illustrate stratigraphic variability both across and perpendicular to depositional strike. The results of this study demonstrate that first-order stratigraphic patterns were fundamentally influenced by accommodation variations produced through differential subsidence related to tectonic loading along the edge of the Kalahari craton. The Kuibis carbonate platform developed as a ramp which was in part supplied by carbonate bioclastic debris generated by the earth's oldest calcified organisms. Fossil contents are highest in association with thrombolitic facies and suggest a strong substrate control on organism habitat. However, the bulk of the sediment may have been produced through aggregation of micrite, precipitated by abiotically or microbially-regulated processes, to form larger, sand-sized particles. As such, the Kuibis platform shares many characteristics in common with older Proterozoic carbonate ramps, but also some features more typical of Paleozoic ramps.en_US
dc.format.extent132 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectEarth, Atmospheric, and Planetary Sciencesen_US
dc.titleTerminal proterozoic carbonate platform development : stratigraphy and sedimentology of the Kuibis Subgroup (ca. 550-548 Ma), Northern Nama Basin, Namibia.en_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.identifier.oclc42731788en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record