MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Store Buffers : implementing single cycle store instructions in write-through, write-back and set associative caches

Author(s)
Nagpal, Radhika
Thumbnail
DownloadFull printable version (4.657Mb)
Alternative title
Single cycle store instructions in write-through, write-back and set associative caches
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Anant Agarwal.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis proposes a new mechanism, called Store Buffers, for implementing single cycle store instructions in a pipelined processor. Single cycle store instructions are difficult to implement because in most cases the tag check must be performed before the data can be written into the data cache. Store buffers allow a store instruction to read the cache tag as it. passes through the pipe while keeping the store instruction data buffered in a backup register until the data cache is free. This strategy guarantees single cycle store execution without increasing the hit access time or degrading the performance of the data cache for simple direct-mapped caches, as well as for more complex set associative and write-back caches. As larger caches are incorporated on-chip, the speed of store instructions becomes an increasingly important part of the overall performance. The first part of the thesis describes the design and implementation of store buffers in write through, write-back, direct-mapped and set associative caches. The second part describes the implementation and simulation of store buffers in a 6-stage pipeline with a direct mapped write-through pipelined cache. The performance of this method is compared to other cache write techniques. Preliminary results show that store buffers perform better than other store strategies under high IO latencies and cache thrashing. With as few as three buffers, they significantly reduce the number of cycles per instruction.
Description
Thesis (B.S. and M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.
 
Includes bibliographical references (p. 87).
 
Date issued
1994
URI
http://hdl.handle.net/1721.1/36678
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.