MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of a lightweight camping cot using carbon fiber tent poles and ripstop nylon

Author(s)
Ward, Walton (Walton Henry)
Thumbnail
DownloadFull printable version (1.212Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
David R. Wallace.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A lightweight camping cot is currently unavailable in the backpacking market. Although camping cots do exist, they are not competitive in weight and size with sleeping pads typically used by campers. On average, sleeping pads weigh 2 pounds while the lightest weight camping cot on the market is 5 pounds. In addition, the cot does not collapse to the size of a sleeping pad. These factors prevent cots from being a suitable alternative to sleeping pads. In order to bridge this discrepancy, a lightweight cot was designed and constructed in order to give campers a viable alternative to sleeping pads. The lightweight cot designed for this thesis weighs approximately 3 pounds and collapses to the size of a sleeping pad. This 1 pound increase in weight from a sleeping pad is made up for by increased comfort while sleeping and safety during lightning storms. The lightweight cot utilizes carbon fiber poles for its structural support and ripstop nylon for the cot surface. The carbon fiber poles are connected with plastic fittings. Each of the cot's components was selected due to its highly lightweight properties and overall strength.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.
 
Includes bibliographical references (p. 26).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/36686
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.