MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and construction of a human powered vehicle seating simulator for diagnostic testing

Author(s)
Lichter, Harry (Harry J.)
Thumbnail
DownloadFull printable version (1.177Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Mark Drela.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A seating simulator was built to test the influence of various seating positions on human cycling power output. The simulator measures a rider's physical stress required to produce a certain power output. A heart rate monitor is used to find the rider's physical stress level. The theory is that the best shaped seat will allow the rider to pedal most efficiently. The seat of the simulator can easily be changed by connecting the seat's support strings to a square grid of holes. Mechanical power flows from the simulator's bike pedals through a chain drive to an electric motor. Electrical power flows from the electric motor through a rectifier to a variable bank of resistors. There were issues which came up involving the bike parts used and the dynamics of the chain drive system. The worst problem was that the supports would flex causing the chain to slacken and resonate under the changing forces of the pedaling motion. First a steel pipe was added to make the system more rigid. Then a sliding copper derailleur was used to allow the chain to stay on up to 213 watts. Finally the copper derailleur was replaced with a bike's derailleur which allows the simulator to operate in excess of 450 watts. Initial tests of several different seat configurations were completed with notable influence on the heart rate of the rider.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.
 
Includes bibliographical references (leaf 24).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/36734
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.