MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Computer Science (CS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Computer Science (CS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning object boundary detection from motion data

Author(s)
Ross, Michael G.; Kaelbling, Leslie P.
Thumbnail
DownloadCS017.pdf (1.163Mb)
Metadata
Show full item record
Abstract
A significant barrier to applying the techniques of machine learning to the domain of object boundary detection is the need to obtain a large database of correctly labeled examples. Inspired by developmental psychology, this paper proposes that boundary detection can be learned from the output of a motion tracking algorithm that separates moving objects from their static surroundings. Motion segmentation solves the database problem by providing cheap, unlimited, labeled training data. A probabilistic model of the textural and shape properties of object boundaries can be trained from this data and then used to efficiently detect boundaries in novel images via loopy belief propagation.
Date issued
2003-01
URI
http://hdl.handle.net/1721.1/3686
Series/Report no.
Computer Science (CS);
Keywords
machine learning, boundary detection, motion segmentation, loopy belief propagation, motion tracking algorithm

Collections
  • Computer Science (CS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.