MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-dimensional ultra-high frequency passive radio frequency identification tag antenna designs

Author(s)
Delichatsios, Stefanie Alkistis
Thumbnail
DownloadFull printable version (20.03Mb)
Alternative title
Multi-dimensional UHF passive RFID tag antenna designs
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Daniel W. Engels.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we present the design, simulation, and empirical evaluation of two novel multi-dimensional ultra-high frequency (UHF) passive radio frequency identification (RFID) tag antennas, the Albano-Dipole antenna and the Albano-Patch antenna, that provide omnidirectional communication capabilities. The performance of a passive UHF RFID tag is highly dependent upon the tag's antenna design, the tag's placement on an item, the materials in the item, and the item's surrounding environment. The majority of existing commercial tag antennas are two-dimensional making the tags a) orientation-sensitive, working well in some directions and not at all in others, and b) susceptible to communication interference from the contents of the tagged object. The Albano antenna designs are three-dimensional, affording the tags to be minimally affected by object material while maintaining near omnidirectional performance. The Albano antenna designs provide significantly improved orientation insensitivity compared with existing widely deployed commercial tag antenna designs.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (leaves 77-79).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37050
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.