MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cell modulated DC/DC converter

Author(s)
Warren, James Raymond, III
Thumbnail
DownloadFull printable version (4.209Mb)
Alternative title
Cell modulated direct current/direct current converter
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
David J. Perreault and Timothy C. Neugebauer.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A very high frequency converter roughly based on a class E topology is investigated for replacing a conventional boost converter circuit. The loss mechanisms in class E inverters are characterized, and metrics are developed to aid in device selection for high frequency converter. A (30 MHz) converter is developed based on a modified class E inverter, single diode rectifier, and cell modulation control architecture based on the Fairchild Semiconductor FDN361AN MOSFET identified by the device selection metrics. In addition to meeting the output specification of 1 W to 2 W, the converter has the ability to deliver up to 3W over its entire input voltage range of 3.6V to 7.2V. Converter efficiencies were realized ranging from from 71% to 81%. Finally, converter transient response to a 2:1 load step did not even exceed the transient ripple of the converter, approximately 100mV. Higher frequency design allowed for decreasing the magnitude of passive values, and in turn their corresponding physical size. Smaller magnitude components reduced the energy storage in the circuit, allowing for the improved transient response.
 
(cont.) A potential application for this research include integration of the circuit and/or passive components for further miniaturization. Potential applications that could take advantage of the significantly improved transient response are circuits facing load transients, or applications designed to actively modulate their supply voltage or power.
 
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
 
Includes bibliographical references (p. 97-99).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/37061
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.