MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A computational study of a geometric embedding of minimum multiway cut

Author(s)
Shin, David (David Donghun)
Thumbnail
DownloadFull printable version (2.955Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
David R. Karger.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the minimum multiway cut problem, the goal is to find a minimum cost set of edges whose removal disconnects a certain set of k distinguished vertices in a graph. The problem is MAX-SNP hard for k >/= 3. Clinescu, Karloff, and Rabani gave a geometric relaxation of the problem and a rounding scheme, to produce an approximation algorithm that has a performance guarantee of 3/2 - 1/k. In a subsequent study, Karger, Klein, Stein, Thorup, and Young discovered improved rounding schemes via computation experiments for various values of k, yielding approximation algorithms with improved performance guarantees. Their rounding scheme for k = 3 is provably optimal (i.e., its performance guarantee is equal to the integrality gap of the relaxation), but their rounding schemes for k > 3 seemed unlikely to be optimal. In the present work, we improve these rounding schemes for small values of k > 3, yielding improved approximation algorithms. These improvements were discovered by applying an improved analysis to the same set of computational experiments used by Karger et al.
 
(cont.) We also present computer-aided proofs of improved lower bounds on the integrality gap for various values of k > 3. For the k = 4 case, for instance, our work demonstrates a lower and upper bound of 1.1052 and 1.1494, respectively, improving upon the previously best known bounds of 1.0909 and 1.1539. Finally, we present additional computational experiments that may shed some light on the nature of the optimal rounding scheme for the k = 4 case.
 
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (p. 77-78).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37070
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.