MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clustered Naive Bayes

Author(s)
Roy, Daniel Murphy
Thumbnail
DownloadFull printable version (6.097Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Leslie Pack Kaelbling.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Humans effortlessly use experience from related tasks to improve their performance at novel tasks. In machine learning, we are often confronted with data from "related" tasks and asked to make predictions for a new task. How can we use the related data to make the best prediction possible? In this thesis, I present the Clustered Naive Bayes classifier, a hierarchical extension of the classic Naive Bayes classifier that ties several distinct Naive Bayes classifiers by placing a Dirichlet Process prior over their parameters. A priori, the model assumes that there exists a partitioning of the data sets such that, within each subset, the data sets are identically distributed. I evaluate the resulting model in a meeting domain, developing a system that automatically responds to meeting requests, partially taking on the responsibilities of a human office assistant. The system decides, based on a learned model of the user's behavior, whether to accept or reject the request on his or her behalf. The extended model outperforms the standard Naive Bayes model by using data from other users to influence its predictions.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (leaves 71-73).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37075
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.