MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and implementation of a sector-based airspace model for the MIT Extensible Air Network Simulation

Author(s)
Whittaker, Colin J
Thumbnail
DownloadFull printable version (3.767Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
John-Paul Barrington Clarke.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The MIT Extensible Air Network Simulation (MEANS) is a tool that has been designed to assist airline schedulers and air traffic managers in predicting flight delays for given air traffic scenarios. One aspect of the simulation, the determination of flight times, has received criticism from the MEANS users as being too simplistic for their needs. Currently, MEANS predicts flight times based on a historical distribution of observed flight times between city pairs. This system ignores the effects of flight level winds and airspace congestion, two major determiners of flight time. The replacement flight time model presented divides the airspace into discrete sectors based on existing divisions in air traffic control. Each sector has its own wind conditions and capacity limitations which affect passing flights. Results show that, after some calibration, the new flight time model produces accurate flight times when the airspace is divided into ARTCC domains and does not introduce additional errors into other parts of the simulation. Additionally, test scenarios show that the new system is capable of modeling airspace capacity events, such as a radar failure. Comparative results reveal that the old, distribution model produces surprisingly accurate flight times for typical wind conditions and airspace utilization.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (p. 83-84).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37089
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.