dc.contributor.advisor | Sang-Gook Kim. | en_US |
dc.contributor.author | Xia, YuXin, M.B.A. Sloan School of Management. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2007-04-03T17:10:38Z | |
dc.date.available | 2007-04-03T17:10:38Z | |
dc.date.copyright | 2006 | en_US |
dc.date.issued | 2006 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/37091 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006. | en_US |
dc.description | Includes bibliographical references (leaves 99-102). | en_US |
dc.description.abstract | A thin-film lead zirconate titanate, Pb(Zr,Ti)03, MEMS Piezoelectric Micro Power Generator (PMPG) has been integrated with a commercial wireless sensor node (Telos), to demonstrate a self-powered RF temperature sensor module. PMPG and a power management module are designed to satisfy sensor node's power requirement. An electro-mechanical model of PMPG has been developed to maximize power output. The 2nd generation PMPG is designed to provide 0.173 mW power at 3 V DC with a natural frequency of 155.5 Hz. The power management module is developed to provide AC-DC rectification, energy storage, and active switching between PMPG and application circuit. To minimize power consumption, sensor data is taken at a discontinuous interval. A test bed is developed, which mimics that of a liquid gas pipeline used in the Alaska, where the self-powered sensor be used to monitor pipeline temperature. | en_US |
dc.description.statementofresponsibility | by YuXin Xia. | en_US |
dc.format.extent | 111 leaves | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Self-powered wireless sensor system using MEMS piezoelectric micro power generator (PMPG) | en_US |
dc.title.alternative | Self-powered wireless monitoring system using MEMS piezoelectric micro power generator | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 84842173 | en_US |