MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Was the patient cured? : understanding semantic categories and their relationship in patient records

Author(s)
Sibanda, Tawanda Carleton
Thumbnail
DownloadFull printable version (5.979Mb)
Alternative title
Semantic interpretation of medical discharge summaries
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Ozlem Uzuner and Peter Szolovits.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we detail an approach to extracting key information in medical discharge summaries. Starting with a narrative patient report, we first identify and remove information that compromises privacy (de-identification); next we recognize words and phrases in the text belonging to semantic categories of interest to doctors (semantic category recognition). For disease and symptoms, we determine whether the problem is present, absent, uncertain, or associated with somebody else (assertion classification). Finally, we classify the semantic relationships existing between our categories (semantic relationship classification). Our approach utilizes a series of statistical models that rely heavily on local lexical and syntactic context, and achieve competitive results compared to more complex NLP solutions. We conclude the thesis by presenting the design for the Category and Relationship Extractor (CaRE). CaRE combines our solutions to de-identification, semantic category recognition, assertion classification, and semantic relationship classification into a single application that facilitates the easy extraction of semantic information from medical text.
Description
Includes bibliographical references (leaves 103-107).
 
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37097
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.