MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-Disciplinary Analysis in Morphing Airfoils

Author(s)
Natarajan, Anand
Thumbnail
DownloadHPCES014.pdf (11.16Kb)
Metadata
Show full item record
Abstract
Fully morphing wings allow the active change of the wing surface contours/wing configuration in flight enabling the optimum wing design for various flight regimes. These wing shape deformations are obtained by using smart actuators, which requires that the wing structure be flexible enough to morph under applied actuator loads and at the same time be fully capable of holding the aerodynamic loads. The study of such wing surface deformation requires an aeroelastic analysis since there is an active structural deformation under an applied aerodynamic field. Herein, a 2-D wing section, that is, an airfoil is considered. Modeling a variable geometry airfoil is performed using B-spline expansions. B-spline representation is also favorable towards optimization and provides a methodology to design curves based on discrete polygon points. The energy required for deforming the airfoil contour needs to be minimized. One of the methodologies adopted to minimize this actuation energy is to use the aerodynamic load itself for wing deformation. Another approach is to treat the airfoil deformation as a Multi Disciplinary Optimization (MDO) problem wherein the actuation energy needs to be minimized subject to certain constraints. The structural analysis is performed using commercial finite element software. The aerodynamic model is initiated from viscous-inviscid interaction codes and later developed from commercial Computational Fluid Dynamics (CFD) codes. Various modeling levels are investigated to determine the design requirements on morphing airfoils for enhanced aircraft maneuverability.
Date issued
2003-01
URI
http://hdl.handle.net/1721.1/3718
Series/Report no.
High Performance Computation for Engineered Systems (HPCES);
Keywords
wing deformation, variable geometry airfoil, Multi Disciplinary Optimization, Computational Fluid Dynamics

Collections
  • High Performance Computation for Engineered Systems (HPCES)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.