MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two dimensional control of metamaterial parameters for radiation directivity

Author(s)
Foltz, Eleanor R. (Eleanor Ruth)
Thumbnail
DownloadFull printable version (18.98Mb)
Alternative title
2D control of metamaterial parameters for radiation directivity
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Jin Au Kong and Bae-Ian Wu.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This work examines the feasibility of using metamaterials to direct radiation. The limits of required index of refraction and the required material depth are explored using MATLAB simulations. A wedge of connected S-shape metamaterial is chosen and simulated in CST Microwave Studio. The incident radiation is Transverse Magnetic (TM) and negative deflection is achieved. The S-shape wedge is adjusted in small ways, and a specific wedge is chosen for further study. The S-shape metamaterial wedge is then adjusted by adding lumped elements of capacitance throughout the structure. A beam through this adjustable material is deflected -76° to +580 by adding 0pF to 6pF additional capacitance. The deflection is not monotonic, but most pronounced between 0.lpF and 0.8pF. The deflection is discussed, as well as the regions of strongest signal power.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (leaves 77-80).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37199
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.