MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and evaluation of a 2-D planar therapeutic ultrasound phased array

Author(s)
Khatri, Danish Suleiman
Thumbnail
DownloadFull printable version (14.32Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Kullervo Hynynen and Roger G. Mark.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Focused ultrasound continues to be investigated as an exciting technique for several medical therapy applications including tissue ablation. Phased array transducers serve as important devices for delivering the high intensity focused ultrasound to the targeted tissue. These arrays often produce undesired secondary foci called grating lobes that can result in heating of non-targeted healthy tissue. Grating lobes can be eliminated by setting the element-spacing between adjacent elements to 2 or less. The aim of this research is to construct and evaluate a 2-D planar phased array with close to /2 element-spacing. A 7x7 element array with element-spacing of 0.762mm was constructed using 1,3-piezocomposite material. Acoustic field measurements of the array focused at three different locations were taken to demonstrate its ability to scan the focus in a volume. In addition, a maximum average intensity of 5.54W/cm2 was measured for the unfocused array using radiation force measurements.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.
 
"October 14, 2005."
 
Includes bibliographical references (leaves 63-67).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37208
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.