MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of monolithic CMOS-compatible visible light emitting diode arrays on silicon

Author(s)
Chilukuri, Kamesh
Thumbnail
DownloadFull printable version (6.400Mb)
Alternative title
Development of monolithic complementary metal oxide semiconductor-compatible visible LED arrays on silicon
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Eugene A. Fitzgerald.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The synergies associated with integrating Si-based CMOS ICs and III-V-material-based light-emitting devices are very exciting and such integration has been an active area of research and development for quite some time now. SiGe virtual substrate technology presents one way to integrate these materials. A more practical approach to monolithic integration based on the SiGe virtual substrate technology was followed in this work which involves wafer bonding and hydrogen-induced exfoliation to transfer a thin layer of device-quality silicon on top of the SiGe graded buffers to produce Silicon on Lattice Engineered Substrate (SOLES). SOLES wafers are suitable for the practical fabrication of SOI CMOS circuits and III-V-based photonic devices on a common silicon substrate. A novel monolithic CMOS compatible AlGaInP visible LED array on the SOLES platform was developed, fabricated and demonstrated in this work. The prototype array is an important breakthrough in the realization of the ultimate objective - monolithically integrated optical interconnects in high speed digital systems.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2006.
 
Includes bibliographical references (p. 102-103).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37375
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.