MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributed algorithms for self-disassembly in modular robots

Author(s)
Gilpin, Kyle W
Thumbnail
DownloadFull printable version (42.89Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Daniela Rus.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We developed a modular robotic system that behaves as programmable matter. Specifically, we designed, implemented, and tested a collection of robots that, starting from an amorphous arrangement, can be assembled into arbitrary shapes and then commanded to self-disassemble in an organized manner. The 28 modules in the system were implemented as 1.77-inch autonomous cubes that were able to connect to and communicate with their immediate neighbors. Two cooperating microprocessors controlled the modules' magnetic connection mechanisms and infrared communication interfaces. We developed algorithms for the distributed communication and control of the system which allowed the modules to perform localization and distribute shape information in an efficient manner. When assembled into a structure, the modules formed a system which could be virtually sculpted using a computer interface which we also designed. By employing the sculpting process, we were able to accurately control the final shape assumed by the structure. Unnecessary modules disconnected from the structure and fell away. The results of close to 200 experiments showed the that the algorithms operated as expected and were able to successfully control the distributed system. We were able to quickly form one, two, and three dimensional structures.
Description
Thesis (M. Eng. and S.B.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (p. 225-226).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37572
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.