MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithms and lower bounds in finite automata size complexity

Author(s)
Kapoutsis, Christos, 1974-
Thumbnail
DownloadFull printable version (7.069Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Michael Sipser.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis we investigate the relative succinctness of several types of finite automata, focusing mainly on the following four basic models: one-way deterministic (1)FAs), one-way nondeterministic (1NFAs), two-way deterministic (2DFAS), and two-way nondeterministic (2NFAS). First, we establish the exact values of the trade-offs for all conversions from two-way to one-way automata. Specifically, we prove that the functions ... return the exact values of the trade-offs from 2DFAS to 1DFAS, from 2NFAS to 1DFAs, and from 2DFAs or 2NFAS to 1NFAs, respectively. Second, we examine the question whether the trade-offs from NFAs or 2NFAS to 2DiFAs are polynomial or not. We prove two theorems for liveness, the complete problem for the conversion from 1NFAS to 2DFAS. We first focus on moles, a restricted class of 2NFAs that includes the polynomially large 1NFAS which solve liveness. We prove that, in contrast, 2DFA moles cannot solve liveness, irrespective of size.
 
(cont.) We then focus on sweeping 2NFAS, which can change the direction of their input head only on the end-markers. We prove that all sweeping 2NFAs solving the complement of liveness are of exponential size. A simple modification of this argument also proves that the trade-off from 2DFAS to sweeping 2NFAS is exponential. Finally, we examine conversions between two-way automata with more than one head-like devices (e.g., heads, linearly bounded counters, pebbles). We prove that, if the automata of some type A have enough resources to (i) solve problems that no automaton of some other type B can solve, and (ii) simulate any unary 2DFA that has additional access to a linearly-bounded counter, then the trade-off from automata of type A to automata of type B admits no recursive upper bound.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (p. 97-99).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37891
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.