MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single-photon frequency upconversion for long-distance quantum teleportation and communication

Author(s)
Albotǎ, Marius A., 1974-
Thumbnail
DownloadFull printable version (21.30Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Franco N.C. Wong and Jeffrey H. Shapiro.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Entanglement generation, single-photon detection, and frequency translation that preserves the polarization quantum state of the photons are essential technologies for long distance quantum communication protocols. This thesis investigates the application of polarization entanglement to quantum communication, including frequency upconversion, photon-counting detection, and photon-pair and entanglement generation. We demonstrate a near-unity efficient frequency conversion scheme that allows fast and efficient photon counting at wavelengths in the low-loss fiber optic and atmospheric transmission band near 1.55 /im. This upconverter, which is polarization-selective, is useful for classical as well as quantum optical communication. We investigate several schemes that allow frequency translation of polarization-entangled photons generated via spontaneous parametric downconversion in second order non-linear crystals. We demonstrate upconversion from 1.56 to 0.633 m that preserves the polarization state of an arbitrarily polarized input. The polarization-insensitive upconverter uses bidirectional sum-frequency generation in bulk periodically poled lithium niobate and a Michelson interferometer to stabilize the phase. Using this bidirectional upconversion technique, entangled photons produced in a periodically poled parametric downconverter can be translated to a different wavelength with preservation of their polarization state. We discuss the implications of these results for quantum information processing.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (p. 133-139).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37899
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.