MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Six degrees of freedom estimation using monocular vision and moiré patterns

Author(s)
Tournier, Glenn P. (Glenn Paul)
Thumbnail
DownloadFull printable version (11.72Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Eric Feron.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present the vision-based estimation of the position and orientation of an object using a single camera relative to a novel target that incorporates the use of moire patterns. The objective is to acquire the six degree of freedom estimation that is essential for the operation of vehicles in close proximity to other craft and landing platforms. A target contains markers to determine relative orientation and locate two sets of orthogonal moire patterns at two different frequencies. A camera is mounted on a small vehicle with the target in the field of view. An algorithm processes the images extracting the attitude and position information of the camera relative to the target utilizing geometry and 4 single-point discrete Fourier transforms (DFTs) on the moire patterns. Manual and autonomous movement tests are conducted to determine the accuracy of the system relative to ground truth locations obtained through an external indoor positioning system. Position estimations with accompanying control techniques have been implemented including hovering, static platform landings, and dynamic platform landings to display the algorithm's ability to provide accurate information to precisely control the vehicle. The results confirm the moire target system's feasibility as a viable option for low-cost relative navigation for indoor and outdoor operations including landing on static and dynamic surfaces.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.
 
Includes bibliographical references (p. 105-107).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/37951
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.