Show simple item record

dc.contributor.advisorJulian P. Sachs.en_US
dc.contributor.authorKneeland, Jessie M. (Jessie Mary)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.en_US
dc.coverage.spatialnl-----en_US
dc.date.accessioned2007-07-18T13:20:22Z
dc.date.available2007-07-18T13:20:22Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/37982
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2006.en_US
dc.descriptionIncludes bibliographical references (p. 85-89).en_US
dc.description.abstractAlkenone-based estimates of sea surface temperature (SST) in the northwest Atlantic during the last 10,000 years are presented and used to assess scenarios for Holocene climate variability. Alkenone concentration and unsaturation records are presented from cores KNR140-39GGC, KNR140-51GGC, MD95-2028, MD95-2031, and MD95-2025 from the Blake Ridge (320N), Carolina Slope (330N), Fogo Seamount (42°N), Narwhal (440N), and Orphan Basin (500N) respectively. The southernmost core, from the Blake Ridge, indicates very little temperature variation over the Holocene. Somewhat inshore and to the north of that location, the Carolina Slope record shows a slight cooling trend of about 1.50C over the past 5,000 years, which is interrupted by a brief but sudden drop of about 1C between 3,000 and 2,000 years before present. Lack of age control for the core from Fogo Seamount prevents any conclusions about the time frame of alkenone variation at that location. At the Narwhal site, which is not far from the Laurentian fan, a strong and consistent cooling of 9C is the most recent pattern of variation. Alkenone concentrations from the Orphan Basin were not sufficient for reliable measurement of a Holocene temperature trend.en_US
dc.description.abstract(cont.) The general pattern of strong cooling in the northern slope water region and very modest cooling south of Cape Hatteras, where the Gulf Stream separates from the coastline and heads out. to sea, may suggest a shift in mean Gulf Stream path as a possible culprit for the temperature record seen at the Narwhal site. However, changes of incoming solar radiation or seasonality of alkenone production over the Holocene provide alternative mechanisms for alkenone temperature variation.en_US
dc.description.statementofresponsibilityby Jessie M. Kneeland.en_US
dc.format.extent89 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleAlkenone-based evidence of Holocene slopewater cooling in the northwest Atlanticen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc150562745en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record