MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving the strength of 3DP parts and development of controlled strength cellular structure investment casting shell

Author(s)
Bang, Won B
Thumbnail
DownloadFull printable version (14.53Mb)
Alternative title
Improving the strength of Three Dimensional Printing parts and development of controlled strength cellular structure investment casting shell
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Emanuel M. Sachs.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Three Dimensional Printing (3DP) is a rapid prototyping process that creates a three dimensional part directly from computer models by printing a sequence of two dimensional layers. In this research, the strength of 3DP parts were improved by using different "print styles" (the way binder is deposited on the powder bed in creating a 3DP part) for use in investment casting process. The print styles that were created optimized line to line interaction between the printed lines, binder overlap, and the amount of unprinted powder surrounding the printed features. The strength of the parts are measured in three different axes (X-fast, Y-slow, Z). The strength improved by factors of 2, 8, and 7 for the three different axes. A controlled strength cellular structure investment casting shell that enables the creation of a metal part without any stress related defects has been created. The ceramic shell has an open cell frame structure with thin inner shell where the metal casting is poured. The flexibility of the 3DP technology applied to controlled strength cellular structure investment casting shell will incorporate all the advantages of 3DP to investment casting (Sach 1992, ASME) as well as reduction in material consumption, controlled heat transfer, permeability, and of course controlled strength to eliminate stress related defects. The cellular structure ceramic mold is designed to withstand the pouring pressures of the molten metal and survive the handling during processing yet fail when the stresses from the contracting metal becomes excessive. The 3DP molds are usually 60% porous and cellular structure investment casting shells consist of only 35% of the 3DP material per volume. A controlled strength cellular structure investment casting shell is designed to fail when excessive stress is applied to the shell structure. The stress on the casting shell is caused by the shrinkage of the metal part. The controlled strength investment casting shell has an open cellular structure frame with a thin inner shell where the metal casting will form.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1996.
 
Includes bibliographical references (p. 79).
 
Date issued
1996
URI
http://hdl.handle.net/1721.1/38200
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.