MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of an endoscopic biopsy needle with flexural members

Author(s)
Figueredo, Stacy L. (Stacy Lee), 1981-
Thumbnail
DownloadFull printable version (5.550Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Alexander H. Slocum.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As a minimally invasive means of extracting a tissue sample from a patient, current endoscopic biopsy needles generally do not preserve tissue histology and often require multiple attempts to obtain a tissue sample. This paper presents an endoscopic biopsy needle with internal flexures that enable tissue to enter the hollow needle and then be severed from surrounding tissue when the needle is withdrawn. Using force-deflection and sample weight data from 10x scaled prototypes, variations of a flexural design captured 1.1 grams of a tissue phantom on average, as compared to wedge-type designs that averaged of 0.7-0.8 grams. Peak entrance forces for the flexure design were lower than for both wedge and extended wedge designs, and resistance forces were higher upon needle extraction. A low-angle 15-degree feature produced lower entrance resistance and larger exit resistance compared with 30 degree, 45 degree, and 60 degree features, which is desirable when retaining tissue. Manufacturing of a 1x scale prototypes, using a grinding and laser cutting process, suggested that flexural features could be produced in current endoscopic biopsy needles, but changes to the beveled cutting tip would first have to be made before flexural elements could be tested on actual liver samples.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.
 
Includes bibliographical references (p. 96-97).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/38273
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.