Show simple item record

dc.contributor.advisorVincent W.S. Chan.en_US
dc.contributor.authorChoi, Jihwan Patrick, 1975-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2007-08-03T18:27:24Z
dc.date.available2007-08-03T18:27:24Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/38298
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.en_US
dc.descriptionIncludes bibliographical references (p. 175-180).en_US
dc.description.abstractFor multimedia and other data services over satellite networks, the efficient management of scarce satellite communication resources is critical for the economic competitiveness of the medium. To support a broad spectrum of users with small terminals at high data rates, narrow transmit spotbeams from the satellite must be used. Since satellite on-board resources are too expensive to illuminate all of the spotbeam-coverage cells within the satellite service area, an optimized method of agile antenna gain patterning and beam scheduling is required to greatly improve the efficiency of transmission and power management. In this thesis, we jointly optimize resource allocation/scheduling, congestion control and antenna gain patterning for communication satellites with advanced transmission antennas. Then, we develop a low-complexity on-line algorithm that considers channel conditions, interference and average delay constraints, and approaches the theoretical steady-state limit. We introduce optimized beam profiling based on traffic demand and channel conditions over satellite downlinks, which can achieve a substantial power gain and reasonable proportional fairness. We show that a modest number of active parallel beams are sufficient to cover many cells efficiently with dynamic capacity allocation.en_US
dc.description.abstract(cont.) Next, for the multiple beam antenna case, we develop a jointly optimized scheme of beam allocation and congestion control with transmitter-sharing and average delay constraints, which provides high throughput and/or small average queueing delays. Last, we find the solution for joint antenna gain patterning and scheduling by considering spatially close co-channel interference in the use of phased array antenna. We suggest an optimum scheduling policy, which selects users with higher marginal returns of a composite cost function with respect to allocated power, in terms of better channel conditions, less interference (depending on users' geographic distribution), and larger delay. The simulation result indicates that a real-time on-line algorithm can achieve a throughput close to the analytic steady-state upper bound. Due to its flexible power allocation, we demonstrate that the phased array antenna can provide better performance than the multiple beam antenna when a small number of users are very demanding or many users are located in a small and crowded areaen_US
dc.description.statementofresponsibilityby Jihwan Patrick Choi.en_US
dc.format.extent180 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleResource allocation and scheduling for communication satellites with advanced transmission antennasen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc153917310en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record