MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coping with uncertain dynamics in visual tracking : redundant state models and discrete search methods

Author(s)
Taycher, Leonid
Thumbnail
DownloadFull printable version (41.06Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Trevor J. Darrell.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A model of the world dynamics is a vital part of any tracking algorithm. The observed world can exhibit multiple complex dynamics at different spatio-temporal scales. Faithfully modeling all motion constraints in a computationally efficient manner may be too complicated or completely impossible. Resorting to use of approximate motion models complicates tracking by making it less robust to unmodeled noise and increasing running times. We propose two complimentary approaches to tracking with approximate dynamic models in a probabilistic setting. The Redundant State Multi-Chain Model formalism described in the first part of the thesis allows combining multiple weak motion models, each representing a particular aspect of overall dynamic, in a cooperative manner to improve state estimates. This is applicable, in particular, to hierarchical machine vision systems that combine trackers at several spatio-temporal scales. In the second part of the dissertation, we propose supplementing exploration of the continuous likelihood surface with the discrete search in a fixed set of points distributed through the state space. We demonstrate the utility of these approaches on a range of machine vision problems: adaptive background subtraction, structure from motion estimation, and articulated body tracking.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (p. 133-142).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/38317
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.